ABS VS Polypropylene | The Definitive Guide

The battle for supremacy between Acrylonitrile Butadiene Styrene (ABS) and Polypropylene (PP) has captivated the attention of engineers and material scientists alike.

These two stalwarts of the polymer industry each have unique characteristics and advantages, and their competition becomes intense when evaluated for specific applications.

ABS VS Polypropylene

This comprehensive article aims to unravel each plastic’s mysteries, revealing the nuanced attributes that make ABS and Polypropylene uniquely qualified for specific tasks.

ABS VS Polypropylene

Chemical Composition & Structure

ABS: A co-polymeric blend of three monomers: Acrylonitrile for chemical resistance, Butadiene for toughness, and Styrene for rigidity. This complex mix results in a versatile plastic with balanced properties.

PP: A straightforward polymer of propylene monomers, PP offers varying crystalline structures, including atactic, isotactic, and syndiotactic configurations.

The chemistry behind these materials determines their basic properties and sets the stage for potential modifications, such as adding flame retardants or colorants.

As a result, ABS and PP can be custom-tailored to meet specific needs, making their roles in the polymer landscape even more significant.

Polypropylene VS ABS: Mechanical Properties

Mechanical Property
Polypropylene (PP)
Tensile Strength42-55 MPa30-35 MPa
Impact StrengthHighModerate
Wear ResistanceModerateGood

For applications requiring long-term durability or exposure to mechanical stresses, ABS generally offers better tensile strength and impact resistance. In contrast, PP shines in applications where rigidity and wear resistance are vital, such as gears or bearings.

Thermal Stability & Resistance

Physical Property
Polypropylene (PP)
Glass Transition Temperature~105°C~0°C
Melting PointNo true melting point (amorphous)~165°C
UV ResistancePoorModerate
Thermal ConductivityLowModerate

PP’s superior melting point and thermal conductivity suit applications requiring high-temperature resilience, such as dishwasher-safe utensils. Conversely, ABS tends to be more dimensionally stable at lower temperatures, making it ideal for indoor applications.

Chemical Resistance

ABS: Resistant to many polar solvents but generally susceptible to organic solvents like acetone.

PP: Highly resistant to most acids and alkalis but can be compromised by potent oxidizing agents.

Depending on the chemicals encountered in the environment, each material has its niche of chemical resistance. This makes it crucial to evaluate the chemical landscape before choosing between ABS and PP.

ABS VS Polypropylene: Applications and Industries 


Automotive Components: Its high impact resistance makes it ideal for bumpers and dashboards used in cars and trucks.

Consumer Electronics: Used in phone casings, keycaps, and other parts requiring durability and aesthetics.

3D Printing: Its balanced properties make it a preferred choice for 3D printed prototypes and functional parts.

Medical Devices: Used in non-implantable parts like instrument handles and enclosures.


Food Packaging: Its chemical inertness makes it safe for storing food.

Textile Industry: Used in ropes, thermal underwear, and carpets.

Industrial Chemical Tanks: Its excellent chemical properties make it ideal for storing acids and bases.

Medical: Ideal for syringes and other disposable items due to its sterilization capabilities.

Polypropylene VS ABS: Physical Properties 

Physical Property
Optical TransmissionModerate
High in specialized copolymers
Elongation at Break4–50%2.4–900%
Modulus of Elasticity1.1–2.9 GPa0.08–8.25 GPa
Flexural Yield Strength40–90 MPa0.296–180 MPa
Hardness (Rockwell R)70–12020–118
Ultimate Tensile Strength40–75 MPa9–80 MPa
Yield Tensile Strength30–80 MPa4–1350 MPa
Flexural Modulus1.5–2.7 GPa0.026–10 GPa
Coefficient of Friction0.2–0.60.25
Coefficient of Thermal Expansion73–110 µm/m-°C
18.0–185 µm/m-°C
Melting PointNo true melting point (amorphous)61–221 °C
Max Service Temperature80–100 °C65–125 °C

This table offers a side-by-side comparison of ABS and Polypropylene, helping to highlight the distinguishing features of each material.

While ABS generally displays balanced properties like good tensile strength and moderate thermal expansion, Polypropylene shows remarkable versatility, especially in its elongation at break and yield tensile strength.

Remember that these are general values and can differ based on the grade and specific formulation of the material.

Always consult datasheets for the exact quality of material you consider for your application.

ABS VS Polypropylene: Processing Attributes 

Processibility Feature
Polypropylene (PP)
Melt Flow Index1.7-40 g/10 min0.1-80 g/10 min
Injection Molding Temp200-250°C160-220°C
Extrusion Temperature210-270°C180-240°C
Ease of Blow MoldingModerateGood
Ease of ThermoformingGoodExcellent
Adhesive BondingGoodModerate
Chemical ResistanceModerateExcellent

ABS VS Polypropylene: Cost

ABS VS Polypropylene: Cost

Several factors contribute to their respective pricing structures regarding the cost of ABS and Polypropylene.

Both materials are widely used, which helps economies of scale work in their favor, generally lowering costs.

However, ABS is typically more expensive per kilogram than PP.

This price discrepancy can be attributed to the more complex polymerization process of ABS, involving three different monomers, compared to the more straightforward process for PP.

That said, cost-effectiveness is not merely a function of the raw material cost.

For example, ABS has better impact resistance and higher tensile strength, which may reduce the overall cost of part failure in high-stress applications.

On the other hand, PP’s lower density could mean less material is needed for a given application, effectively reducing the cost per part.

PP’s lower melting temperature can also save energy during processing, contributing to a lower overall price for specific applications.

Given these complexities, the most cost-effective choice is highly context-dependent, often requiring a comprehensive lifecycle analysis to account for material costs and processing, maintenance, and end-of-life expenses.

Therefore, choosing between ABS and PP should involve looking at the material costs and deeply considering the application’s specific needs.

Polypropylene VS ABS: Sustainability  

When it comes to sustainability, Polypropylene generally has the edge over ABS. PP can be more easily recycled and has a lower carbon footprint due to its lower melting temperature, which translates to energy savings during manufacturing.

It is also inert and non-toxic, making it a preferred choice for applications like food packaging, where waste management is a critical sustainability factor. ABS, however, has been catching up in terms of recyclability.

Innovations in recycling technology are making ABS increasingly sustainable, although it generally requires specialized recycling processes. Both materials are making strides in incorporating renewable or recycled content, but as of now, PP holds a more favorable position in terms of overall sustainability.


When weighing ABS against PP, it becomes evident that each has its merits and drawbacks. ABS offers a balanced blend of attributes, making it a Jack-of-all-trades but a master of none.

On the other hand, PP boasts specialized strengths in temperature and chemical resistance, making it the go-to material for niche applications. An in-depth understanding of their individual and comparative capabilities can guide you in making a material selection that aligns with your needs.

Leave a Comment